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Background. Nonalcoholic fatty liver disease (NAFLD) has become a leading cause of liver transplantation. Lingguizhugan
decoction (LGZG), a classical Chinese herbal formula, has beneficial effects on NAFLD animal models. Our study examined
the impact of LGZG on hepatic global transcriptome of high-fat-diet-induced NAFLD rats. Methods. Three groups of Wistar
rats were included: normal, NAFLD model, and LGZG-treated NAFLD groups. Four weeks for the treatment, liver tissues
were harvested for RNA sequencing. Differentially expressed genes (DEGs) and enriched pathways were detected on hepatic
global transcriptome profile. Real-time PCR validated the regulatory patterns of LGZG on NAFLD rats. Results. DEGs
between the NAFLD model and normal groups indicated the elevated peroxisome proliferator-activated receptor (PPAR) and
hedgehog signaling pathways in NAFLD rats. In bile secretion pathway, genes involved in cholesterol secretion were activated
by LGZG treatment. Increased expression of antioxidant OSIGN1 and decreased expression of genes (AHR, IRF2BP2, and
RASGEF1B) that induce oxidative stress and inflammation were observed in NAFLD rats treated with LGZG. The regulatory
patterns of LGZG treatment on these oxidative stress-related genes were confirmed by real-time PCR. Conclusion. Our study
revealed a “two-hits-targeting” mechanism of LGZG in the treatment for NAFLD: alleviating oxidative stress and activating
cholesterol secretion.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) encompasses a
spectrum of pathological conditions, including simple steato-
sis, nonalcoholic steatohepatitis (NASH), fibrosis, and cir-
rhosis. NAFLD has been increasingly prevalent worldwide
and has become a leading cause of liver transplantation,
along with increasing obesity rate and metabolic syndrome
[1]. According to the “two-hits” hypothesis of NAFLD path-
ogenesis, the first hit is represented by lipid accumulation in

the hepatocytes, after which oxidative stress leads to severe
NASH [2]. Additionally, recent studies demonstrated that
other risk factors also contribute to the development of
severe NASH, including altered gut microbiota [3, 4], endog-
enous alcohol metabolism [5–7], and endoplasmic reticulum
stress [8]. Currently, many potential targets for the treatment
of NAFLD are identified, including lipid metabolism, oxida-
tive stress, inflammation, fibrosis, and altered gut microbiota
[9]. However, clinical trials exclusively aimed at only one of
these targets at a time and achieved limited effects. For
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example, vitamin E therapy targets the “second hit”—oxida-
tive stress, and pioglitazone therapy targets insulin resistance.
Both of these two therapies decrease serum AST/ALT and
reduce lobular inflammation. They, however, have no impact
on insulin resistance, portal inflammation, or liver fibrosis
and did not obtain satisfactory sustained results [10].

Given NAFLD is a consequence of multiple risk factors,
especially the major “two hits”—lipid accumulation and oxi-
dative stress. A therapeutic strategy that targets both of “two
hits” or several hits simultaneously could be more effective
than one single therapeutic target. Traditional Chinese med-
icine (TCM) has been increasingly applied as the potential
anti-NAFLD drugs and exhibited multipronged preventive
and therapeutic effects [9, 11, 12]. LGZG is a classic TCM
formula, which is a mixture of four herbs: Poria, Ramulus
Cinnamomi, Atractylodes macrocephala Koidz, and Radix
Glycyrrhizae. LGZG has a long time of clinical practice in
the treatment of chronic congestive heart failure. In recent
years, LGZG has been effectively used to treat obesity and
hyperlipidemia [13] and our previous study showed that
LGZG has a benefit in treating NAFLD [14].

TCM is an ancient medical practice system which
emphasizes the integrity of the entire human body, and it
usually exerts therapeutic effects via multiple targets or
pathways. Recently, high-throughput omics technologies,
especially transcriptomics RNA sequencing, have been
increasingly applied in TCM research and revealed multi-
pronged therapeutic mechanisms of TCM [11, 15]. Herein,
to better understand the therapeutic mechanisms of LGZG,
we examined the effects of LGZG treatment on the hepatic
global transcriptome of HFD-induced NAFLD rats. Com-
bined with real-time PCR validation, we identified a
“two-hits-targeting” mechanism for LGZG in the treatment
of NAFLD.

2. Materials and Methods

2.1. Experimental Animals and Treatment. This study was
reviewed and approved by the Animal Experiment Ethics
Committee of Shanghai University of TCM and carried out
in accordance with their recommendations. A total of 24
male Wistar rats with weights of 130 g± 10 g in specific
pathogen free (SPF) grade were purchased from Shanghai
Si-Lai-Ke Experimental Animal Ltd. (Shanghai, China). Ani-
mals were randomly divided into three groups (eight rats per
group): normal, NAFLD model, and LGZG-treated NAFLD
groups. Rats in the normal group were fed with a standard
diet. Rats in the NAFLD model and LGZG-treated NAFLD
groups were fed with HFD, which consists of 10% lard oil,
2% cholesterol, and 88% standard chow. Rats in the LGZG-
treated NAFLD group received a dosage of 10mL/kg/d (pure
solution) via drinking freely. The dosage was 6 g crude med-
ical material per kilogram body weight, approximately seven
times of the standard dosage in practice, on the basis of the
dose-equivalence equation between rats and humans [16].
Treatment lasted for four weeks. After a 12-hour fast, the
animals were sacrificed under pentobarbital sodium (2%,
5.5mL/kg) anesthesia. Liver tissues were harvested for subse-
quent analysis.

2.2. Drug Preparation. LGZG decoction is comprised of four
Chinese herbs: Poria (20 g), Ramulus Cinnamomi (15 g),
Rhizoma Atractylodis Macrocephalae (15 g), and Radix Gly-
cyrrhizae (10 g). The dosage is determined according to the
test book of “The Hndouts of JinguiYaoyue.” All herbs were
purchased from Longhua Hospital affiliated to Shanghai
University of TCM. LGZG decoction was made according
to conventional TCM decocting methods [14]. Briefly, all
herbs were boiled with 500mL water after 30min of soaking.
After 20min, the liquid was transferred by filtration as a first
dose of medicine. The remaining of filtration was boiled after
adding 400mL water, and then liquid was transferred by fil-
tration to make a second dose. Two doses were mixed to form
100mL (pure solution) final decoction. The quality of LGZG
was controlled with high-performance liquid chromatogra-
phy (HPLC). HPLC-grade reagents were purchased from
Burdick & Jackson. An Agilent 1100 HPLC system consisting
of a G1354A pump, a G1313A autosampler, and a UV/VIS
Photodiode Array G1315B detector was used for all analyses
(Figure S1).

2.3. RNA Sequencing Analysis. Liver tissue from the right lobe
was collected after four weeks of LGZG treatment as
described above. Total RNA was isolated with NanoPhot-
ometer spectrophotometer (IMPLEN, CA, USA) and quali-
fied on the Qubit RNA Assay (Qubit 2.0 Fluorometer, Life
Technologies, CA, USA). The RNA libraries were sequenced
on IlluminaHiseq 4000 platform with paired-end 150 base
pair long reads. Clean data were obtained from raw data by
removing reads containing adapter, N base, and low-quality
reads with NGS QC Toolkit (version: 2.3.3). Clean data were
mapped to the reference genome of R.norvegicus6.0 and esti-
mated for gene expression level using TopHat2 and cufflinks
(version: 2.2.1).

2.4. Real-Time PCR. OSGIN1, IRF2BP2, AHR, and RAS-
GEF1B mRNA levels were determined by real-time PCR.
Primers were designed with the primer premier 5.0 software
(Table S1). Total RNA of liver tissues was extracted with TRI-
zol reagent (Invitrogen, USA). The concentration of RNA
was measured with NanoDrop 2000 (Thermo Scientific,
USA). Quantitative measurement was performed with the
Premix Ex Taq kit (TakaRa) according to the manufacturer’s
instructions on Applied Biosystems StepOne Plus Sequence
Detection System. The real-time cycler conditions were as
follows: first denatured at 95°C for 30 s and then amplified
with 40 cycles (each cycle was denaturated at 90°C for 5 s
and annealing/extension at 60°C for 30min). Product purity
was determined by dissociation curve analysis. Gene expres-
sion was quantified relative to the values of the control group
after adjusting for β-actin by the 2−ΔΔCT method [17].

2.5. Statistical Analysis. Differentially expressed genes
(DEGs) were identified by cuffdiff (version: 2.2.1), with a Q
value < 0.05 and an absolute value of log2 fold change> 0.58.
Pathway enrichment analysis was performed with cluster-
Profiler R package (version: 2.4.3) with P value < 0.05. Data
were denoted as mean± standard deviation (SD). In bio-
chemical analysis, statistical analysis was performed with
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one-way analysis of variance (ANOVA) and Dunnett’s test.
In RT-PCR validation, statistical analysis was performed
with Mann–Whitney test with a two-tailed distribution.
P values < 0.05 were considered statistically significant.
Statistical analysis was performed in R 3.2.3 software.

3. Results

3.1. Genes and Pathways Associated with NAFLD Pathology.
Expression levels of about 22,077 genes of rat livers were
quantified on a global RNA sequencing. Similar median
gene expression and expression levels for housekeeping
genes and nonliver genes are indicative of the qualified
RNA-seq data in the present study (Figure 1). A total of
931 genes were differentially expressed between the NAFLD
model and normal groups, including 494 upregulated and
437 downregulated genes. These 931 DEGs were regarded
as NAFLD-regulated genes. The top 40 regulated genes
(20 most upregulated and 20 most downregulated) were
depicted in Figure 2. These genes are known to be

associated with lipid metabolism, including triglyceride
metabolic process (PCSK9), steroid biosynthesis (SQLE),
glycerolipid metabolism (MGLL), ether lipid metabolism
(PLA2G7), and phosphatidylinositol signaling system
(IP6K1). Additionally, the chemokine CXCL13, ubiquitin
UBD, and somatomedin SBSPON play roles in inflamma-
tory responses, and their expressions were elevated in
NAFLD rats (Figure 2).

Further, 76 KEGG pathways were enriched with
NAFLD-regulated genes (Table S2). The top 30 enriched
KEGG pathways were shown in Figure 3. In addition to sev-
eral well-known pathways that are related to NAFLD pathol-
ogy (including fatty acid elongation, AMPK signaling
pathway, and NF-kappa B signaling pathway), peroxisome
proliferator-activated receptor (PPAR) and hedgehog (Hh)
signaling pathways (Table S2) are of special interest because
of their essential roles in hepatic fibrosis of NAFLD progres-
sion. As to individual genes of PPAR signaling pathway
(Figure 4(a)), NAFLD rats exhibited increased expression of
one of the nuclear receptors—PPARG, which regulates
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Figure 1: Median gene expression (a) was similar among all study groups. Housekeeping genes GAPDH (b), ACTB (c), G6PD (d), ALDOA
(e), TAF (f), and GPI (g) and nonliver genes ATP4A (h), ATP4B (i), PGC (j), and MSN (k) exhibited similar expression among all
study groups. ∗∗Q value < 0.01 calculated from cuffdiff.
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lipogenesis and cholesterol metabolism and represents a
good candidate gene for NAFLD [18]. Consistently,
increased expression of stearoyl-CoA desaturase (SCD1 and
SCD2) was observed in NAFLD rat livers, which are regu-
lated by PPARG and the rate-limiting enzymes in lipid
biosynthesis [19, 20]. CYP7A1, a rate-limiting enzyme in
cholesterol metabolism, was upregulated in NAFLD rats.
However, some target genes of PPARG were downregulated
in NAFLD rats. And these decreased expressions of the target
genes resulted in impaired fatty acid transport (DBI and
FABP1) and oxidation (CYP4A1), which contributed to fatty
acid accumulation in the NAFLD liver.

G protein-coupled transmembrane receptor Smoothened
(SMO) is one of important components of canonical Hh
signaling pathway. Our results showed upregulation of
SMO in NAFLD rats, compared with normal rats. A trend
of decreased expression of SMO was shown in LGZG-

treated rats. In addition, ADRBK2 (upstream regulator of
SMO) and CCND2 (Hh downstream target gene) were also
significantly elevated in NAFLD rats (Figure 4(b)).

3.2. Genes and Pathways Mediating the Therapeutic Effects of
LGZG. Compared with the NAFLD model group, elevated
expression of 110 genes and decreased expression of 89 genes
were observed in the livers of the LGZG-treated NAFLD rats.
These total 199 genes were considered as LGZG-regulated
genes. Figure 5 showed the top 40 LGZG-regulated genes
(20 most upregulated and 20 most downregulated). The
LGZG-treated NAFLD rats exhibited reduced expression of
INSIG1 and LPIN1, which indicated the decreased choles-
terol biosynthesis and triglyceride accumulation in the liver.
Pathway enrichment analysis was performed with LGZG-
regulated genes and unearthed 29 enriched pathways
(Figure 6, Table S3). In bile secretion pathway, genes required
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for cholesterol secretion were elevated, including ABCG8,
ABCG5, and NCEH1. Some metabolism and signaling path-
ways were also enriched, including fatty acid metabolism,
Jak-STAT, and FoxO signaling pathways.

Furthermore, four (OSGIN1, AHR, IRF2BP2, and RAS-
GEF1B) were shown to be strongly regulated upon LGZG
therapy, which may play potential roles in NAFLD physio-
pathology (Figure 7, Table 1). These four genes also showed
differential expression changes in NAFLD rats, compared
with normal rats. Also, the abnormal expression change in
NAFLD rats was significantly reversed by the LGZG ther-
apy. Thus, they were considered as the important target
genes of LGZG.

3.3. Validation of LGZG-Regulated Genes with Real-Time
PCR. Expression levels of four LGZG-regulated genes were
validated with real-time PCR, including OSGIN1, AHR,
IRF2BP2, and RASGEF1B (Figure 8). The real-time PCR
results confirmed that the expression of OSGIN1 was
reversely elevated, and the expression levels of IRF2BP2,
AHR, and RASGEF1B were inversely suppressed under the
LGZG treatment.

4. Discussion

LGZG is a classic TCM formula that has been effectively used
to treat obesity and hyperlipidemia. Recently, it has exhibited
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potent effects on HFD-induced NAFLD [14]. In this study,
we examined the comprehensive effects of LGZG on the
hepatic global gene expression profile in NAFLD progres-
sion. Many of the changes in expression profile reflected
decreased hepatic cholesterol, oxidative stress, and inflam-
mation. Subsequently, the elevated gene expression in PPAR
and Hh signaling pathways of NAFLD rats provided an
assurance of RNA-seq dataset quality. Two potential
mechanisms under the efficacy of LGZG for NAFLD were
identified: (i) alleviated oxidative stress and (ii) promoted
cholesterol secretion to reduce hepatic cholesterol accumu-
lation (Figure 9). These observations indicated a “two-hits-
targeting” [2, 21] mechanism for LGZG in the treatment
of NAFLD.

4.1. Characteristics of HFD-Induced NAFLD. NAFLD
physiopathology-associated pathways were significantly
enriched with NAFLD-regulated genes. Among these path-
ways, activation of PPAR and Hh signaling pathways is of
special interest because their deregulation contributes to liver
damage and metabolic syndrome [22–27]. Hh signaling is
significantly upregulated in NASH, compared with the nor-
mal healthy liver [28]. Recent study showed that activation
of SMO could induce Hh-responsive hepatocytes in NAFLD
[28], which lends strong support to our results (Figure 4(b)).
Notably, multiple studies showed that in different rodent
models of diet-induced NASH, pharmacological inhibition
of SMO (vismodebig or LDE225) can deactivate Hh signaling
pathway and consistently improve liver inflammation and
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Figure 4: Differential gene expression of (a) PPAR and (b) hedgehog signaling pathways in a NAFLD rat model. ∗Q value < 0.05;
∗∗Q value < 0.01; ∗∗∗Q value < 0.001; ∗∗∗∗Q value < 0.0001 calculated from cuffdiff. #Rate-limiting enzyme.
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fibrosis [25, 28–30]. Despite no significant difference was
observed between NAFLD and LGZG treatment groups for
SMO, a trend of decreased expression was shown in LGZG-
treated NAFLD rats. In addition, lipid metabolism-related
genes were markedly altered in NAFLD rats, which contrib-
uted to hepatic TG accumulation. Genes and pathways asso-
ciated with NAFLD pathology were the manifestation of the
RNA-seq dataset quality.

4.2. Alleviation of Oxidative Stress. Significant expression
changes of four LGZG-regulated genes (OSGIN1, AHR,
IRF2BP2, and RASGEF1B) exhibited alleviation of oxidative
stress upon LGZG treatment, compared with the NAFLD
group. As an antioxidant, OSGIN1 is a cell growth inhibitor
to resist oxidative stress [31]. Liu et al. reported that the
mRNA level of OSGIN1 was reduced in HCC specimens,
and in HCC pateints, the inhibition of OSGIN1 was related
to shorter overall and disease-free survival times [32],

suggesting that the significant upregulation of OSGIN1 is
critical for antioxidant response. AHR is identified to induce
cellular oxidative stress and increase lipid peroxidation in
NAFLD [33–36], and activation of AHR has pleotropic
effects on steatosis of NAFLD [37, 38].

RASGEF1B and IRF2BP2 were involved in inflammatory
responses and were dramatically inhibited by the LGZG
treatment. RASGEF1B was identified as a Ras-associated
guanine nucleotide exchange factor and upregulated in
macrophages stimulated with bacterial lipopolysaccharides
(LPS) [39]. LPS is currently considered one of the major
“hits” in NAFLD pathogenesis and progression [40]. Our
current study showed significant upregulation of RASGEF1B
in NAFLD model rats and reverse inhibition of RASGEF1B
by LGZG treatment. Increased expression of RASGEF1B
may be a strong defense response to LPS in NAFLD progres-
sion, and its restoration indicated the alleviation of inflam-
matory responses. IRF2BP2 acts as a negative regulator of
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the nuclear factor of activated T cell (NFAT) transcription
factor [41]. Restoration of IRF2BP2 by LGZG treatment
also suggested the alleviation of inflammatory responses
in NAFLD. Continuous oxidative stress may lead to
chronic inflammation. Thus, the alleviation of inflamma-
tory responses also indicates the reduced oxidative stress
upon LGZG treatment.

4.3. Activation of Cholesterol Secretion. Liver lipid accumula-
tion is the first “hit” in the pathogenesis of NAFLD, and its
removal is a desired intervention for NAFLD. Cholesterol is
one type of important lipid in the liver, which has been
shown as an emerging factor involved in the development
of many metabolic diseases [8]. Free cholesterol stores in
the liver in the formation of cholesterol esters. In the
cholesterol secretion pathway, the upregulation of neutral
cholesteryl ester hydrolase 1 (NCEH1) can accelerate the
transformation of cholesterol esters into free cholesterol.

ABCG5 and ABCG8 are two half-transporters that dimerize
to create a cholesterol transporter, and their activation pro-
motes the excretion of hepatic cholesterol [42]. In addition,
NCEH1, ABCG5, and ABCG8 are reported to be drug tar-
gets of pioglitazone [43] and ezetimibe [42] in the therapy
of human gallbladder cholesterolosis and HFD-induced
fatty liver.

5. Conclusion

Based on transcriptome analysis and experimental valida-
tion, our study examined the comprehensive effects of LGZG
on hepatic global gene expression profile in HFD-induced
NAFLD rats. Compared with normal rats, our data revealed
significant upregulation of PPAR and Hh signaling pathways
in NAFLD rats, which are known to be involved in NAFLD
pathology and thus provide an assurance of the quality of
our RNA-seq dataset. Of particular interest, NAFLD rats
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with LGZG treatment exhibited elevated expression of
antioxidant and suppressed expression of prooxidant and
proinflammatory genes in oxidative stress. Additionally,
genes required for cholesterol secretion were increased by

the LGZG treatment. These findings supported a “two-
hits-targeting” mechanism for LGZG in the treatment of
NAFLD: alleviating oxidative stress and activating choles-
terol secretion.

Table 1: Important LGZG-regulated genes.

Gene Q value∗ FC# Q value$ FC+ Associated function

OSGIN1 1.44e-03 0.43 5.10e-03 2.31 Oxidoreductase activity

IRF2BP2 6.62e-02 1.43 5.10e-03 0.52 Interferon regulatory factor 2-binding protein 1 & 2

AHR 2.20e-02 1.37 5.10e-03 0.67 Blood vessel development

RASGEF1B 1.44e-03 1.63 5.10e-03 0.46 Ras guanyl-nucleotide exchange factor activity
∗Q value of comparison between the NAFLD model and normal groups, calculated from cuffdiff. #Fold change of comparison between the NAFLD model and
normal groups, calculated from cuffdiff. $Q value of comparison between the LGZG-treated NAFLD and NAFLDmodel groups, calculated from cuffdiff. +Fold
change of comparison between the LGZG-treated NAFLD and NAFLD model groups, calculated from cuffdiff.
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Figure 7: Differential gene expression of LGZG-regulated genes. ∗Q value < 0.05; ∗∗Q value < 0.01 calculated from cuffdiff.
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Figure 8: Differential gene expression of LGZG-regulated genes was examined by real-time PCR. Plotted values are the mean± SD of mRNA
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NAFLD: Nonalcoholic fatty liver disease
NASH: Nonalcoholic steatohepatitis
LGZG: Lingguizhugan
EBP/BW: Epididymal fat pad/body weight ratio
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HPLC: High-performance liquid chromatography
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HCC: Hepatocellular carcinoma.
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Supplementary Materials

Figure S1. Quality control of Lingguizhugan Decoction under
High Performance Liquid Chromatography (HPLC). A. Ref-
erence substance; B. Lingguizhugan Decoction 1. glycyrrhizic
acid. Standardization of extract by HPLC glycyrrhizic acid
was purchased from Shanghai R&D Centre for standardiza-
tion of Chinese Medicines (Shanghai, China), and the purity
was higher than 98.0%;. HPLC-grade reagents were pur-
chased from Burdick & Jackson. An Agilent 1100 HPLC sys-
tem consisting of a G1354A pump, a G1313A auto-sampler,
and a UV/VIS Photodiode Array G1315B Detector was used
for all analyses. Chromatographic separations were carried
out on an Merck C18 hibar column (4.6 mm× 250mm,
5μm) with methanol:acetonitrile : water :acetid acid(as sol-
vent ) (15:35:45:0.9,v/v) in the mobile phase at a flow rate
of 0.8 mL/min at 25°C for 40 min. Twenty μL (after a high
speed centrifugation) of the sample was injected, and the sig-
nals were detected at 254 nm with UV detection. The HPLC
fingerprint of Lingguizhugan decoction revealed the major
peaks (glycyrrhizic acid) at 254 nm. The content of glycyr-
rhizic acid were 0.9548%. Figure S2. Hierarchical clustering
of replicate samples based on correlation matrix in three
groups: (A) Normal group; (B) NAFLD model group; (C)
LGZG-treated group. Each column and row represents
samples in each group. Each cell of the heatmap reflects the
distance of two samples. Distance was measured with Euclid-
ean metric. The legend of distance value is shown on the

upper right. Figure S2A and figure S2B revealed that s12
and s24 were the outlier samples of normal group and
NAFLD model group, respectively. Figure S2C showed no
outlier samples, but the data in s37 was missed during
assessment of serum ALT and AST. Thus, s37 in LGZG-
treated group was also removed in the RNA-seq analysis.
Table S1. Primer pairs for real-time PCR analysis. Table S2.
Enriched KEGG pathways with NAFLD regulated genes.
Table S3. Enriched KEGG pathways with LGZG regulated
genes. (Supplementary Materials)
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